The Giant Protein Titin: A Major Player in Myocardial Mechanics, Signaling, and Disease The Dystrophin Glycoprotein Complex: Signaling Strength and Integrity for the Sarcolemma Cardiac Myosin Binding Protein C: Its Role in Physiology and Disease
نویسندگان
چکیده
The dystrophin glycoprotein complex (DGC) is a specialization of cardiac and skeletal muscle membrane. This large multicomponent complex has both mechanical stabilizing and signaling roles in mediating interactions between the cytoskeleton, membrane, and extracellular matrix. Dystrophin, the protein product of the Duchenne and X-linked dilated cardiomyopathy locus, links cytoskeletal and membrane elements. Mutations in additional DGC genes, the sarcoglycans, also lead to cardiomyopathy and muscular dystrophy. Animal models of DGC mutants have shown that destabilization of the DGC leads to membrane fragility and loss of membrane integrity, resulting in degeneration of skeletal muscle and cardiomyocytes. Vascular reactivity is altered in response to primary degeneration in striated myocytes and arises from a vascular smooth muscle cell–extrinsic mechanism. (Circ Res. 2004;94:1023-1031.)
منابع مشابه
The Giant Protein Titin: A Major Player in Myocardial Mechanics, Signaling, and Disease The Dystrophin Glycoprotein Complex: Structure and Function in Cardiac and Skeletal Muscle Cardiac Myosin Binding Protein C: Its Role in Physiology and Disease
The sarcomere contains, in addition to thin and thick filaments, a filament composed of the giant protein titin (also known as connectin). Titin molecules anchor in the Z-disc and extend to the M-line region of the sarcomere. The majority of titin’s I-band region functions as a molecular spring. This spring maintains the precise structural arrangement of thick and thin filaments, and gives rise...
متن کاملThe Dystrophin Glycoprotein Complex: Signaling Strength and Integrity for the Sarcolemma Cardiac Myosin Binding Protein C: Its Role in Physiology and Disease
The dystrophin glycoprotein complex (DGC) is a specialization of cardiac and skeletal muscle membrane. This large multicomponent complex has both mechanical stabilizing and signaling roles in mediating interactions between the cytoskeleton, membrane, and extracellular matrix. Dystrophin, the protein product of the Duchenne and X-linked dilated cardiomyopathy locus, links cytoskeletal and membra...
متن کاملThe Implication of Androgens in the Presence of Protein Kinase C to Repair Alzheimer’s Disease-Induced Cognitive Dysfunction
Aging, as a major risk factor of memory deficiency, affects neural signaling pathways in hippocampus. In particular, age-dependent androgens deficiency causes cognitive impairments. Several enzymes like protein kinase C (PKC) are involved in memory deficiency. Indeed, PKC regulatory process mediates α-secretase activation to cleave APP in β-amyloid cascade and tau proteins phosphorylation mecha...
متن کاملKlotho Protein,A Biomarker for AKI
Klotho is an anti-aging single-pass membrane protein that is mainly produced in the kidney. The level of soluble klotho decreases with age and the klotho gene is associated with an increased risk of age-related diseases, such as diabetes, skin atrophy, chronic kidney disease, ataxia and cancer. The klotho gene is composed of five exons and encodes a membrane glycoprotein located in the plasma ...
متن کاملStudy of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks
Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...
متن کامل